Pseudo-Time Methods for Constrained Optimization Problems Governed by PDE

نویسنده

  • Shlomo Ta'asan
چکیده

In this paper we present a novel method for solving optimization problems governed by partial di erential equations. Existing methods use gradient information in marching toward the minimum, where the constrained PDE is solved once (sometimes only approximately) per each optimization step. Such methods can be viewed as a marching techniques on the intersection of the state and costate hypersurfaces while improving the residuals of the design equation per each iteration. In contrast, the method presented here march on the design hypersurface and at each iteration improve the residuals of the state and costate equations. The new method is usually much less expensive per iteration step, since in most problems of practical interest the design equation involves much fewer unknowns than either the state or costate equations. Convergence is shown using energy estimates for the evolution equations governing the iterative process. Numerical tests shows that the new method allows the solution of the optimization problem in cost equivalent to solving the analysis problem just a few times, independent of the number of design parameters. The method can be applied using single grid iterations as well as with multigrid solvers. This research was supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-19480 while the author was in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Multilevel Trust-Region Methods for Time-Dependent PDE-Constrained Optimization

We present a class of adaptive multilevel trust-region methods for the efficient solution of optimization problems governed by time–dependent nonlinear partial differential equations with control constraints. The algorithm is based on the ideas of the adaptive multilevel inexact SQP-method from [26, 27]. It is in particular well suited for problems with time–dependent PDE constraints. Instead o...

متن کامل

Multigrid One-Shot Method for PDE-Constrained Optimization Problems

This paper presents a numerical method for PDE-constrained optimization problems. These problems arise in many fields of science and engineering including those dealing with real applications. The physical problem is modeled by partial differential equations (PDEs) and involve optimization of some quantity. The PDEs are in most cases nonlinear and solved using numerical methods. Since such nume...

متن کامل

The Transport PDE and Mixed-Integer Linear Programming

Discrete, nonlinear and PDE constrained optimization are mostly considered as different fields of mathematical research. Nevertheless many real-life problems are most naturally modeled as PDE constrained mixed integer nonlinear programs. For example, nonlinear network flow problems where the flow dynamics are governed by a transport equation are of this type. We present four different applicati...

متن کامل

Parallel Lagrange-newton-krylov-schur Methods for Pde-constrained Optimization Part I: the Kkt Preconditioner

1. Introduction. Optimization problems that are constrained by partial differential equations (PDEs) arise naturally in many areas of science and engineering. In the sciences, such problems often appear as inverse problems in which some of the parameters in a simulation are unavailable, and must be estimated by comparison with physical data. These parameters are typically boundary conditions, i...

متن کامل

Domain decomposition and model reduction for the numerical solution of PDE constrained optimization problems with localized optimization variables

We introduce a technique for the dimension reduction of a class of PDE constrained optimization problems governed by linear time dependent advection diffusion equations for which the optimization variables are related to spatially localized quantities. Our approach uses domain decomposition applied to the optimality system to isolate the subsystem that explicitly depends on the optimization var...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995